FSEEE: Forest Service Employees for Environmental Ethics

Forest news and updates!

Forest Service employees and citizens working together to protect our National Forests

Your National Forests
E-mail Print PDF

Seeing the Forest

It is important to highlight the Forest Service’s successes, so we have launched a campaign to bring the story of the Siuslaw National Forest’s ecosystem restoration to every Forest Service office in the nation.

We are working with renowned documentary producer, Alan Honick, who directed the FSEEE-produced “Torrents of Change” sixteen years ago. “Torrents of Change” launched reform-minded Siuslaw forest supervisor Jim Furnish to deputy chief where he led the Clinton Administration’s roadless rule initiative that protected 60 million wild acres from logging roads.

Bringing the Siuslaw’s story to screen will help Forest Service leaders and young employees understand that a new way forward is possible. We can restore pride in our agency and enthusiasm in our work by embracing a new mission that gives more than lip service to environmental restoration.

View the latest trailer for "Seeing the Forest" or watch the original "Torrents of Change."  To learn more about this project, click here.

 
E-mail Print PDF

FSEEE at 25: The Begining

In 1989, Willamette National Forest timber sale planner, Jeff DeBonis, issued a challenge to the Chief of the Forest Service, “Wouldn’t you like to be able to look back and say the Forest Service was a leader in the quest for a new vision of a truly sustainable society for the twenty-first century?” The implications of that question shook the agency and still reverberate today. Here's the story of how it all began.

Jeff DeBonis

U.S. Forest Service employee Jeff DeBonis organized AFSEEE in 1989. Forest Magazine file photo

Originally published as:

"20 Years of Activism: Taking on the Establishment"

By Jeff DeBonis
Forest Magazine, Summer 2009

The incident that made me start my quest for U.S. Forest Service reform took place in 1988 on the Willamette National Forest. As a timber sale planner, I was asked to sign off on an environmental assessment for a timber sale in the McKenzie River watershed on Oregon’s Blue River Ranger District. I had been working for the agency for more than a decade, and had just moved to the district from the Nez Perce National Forest in Idaho.

The assessment had been completed by a former timber sale planner. I was appalled when I went out to look at the sale. Roads were being built into spotted owl habitat areas, which was not legal. In addition, the unstable soils the roads were being built on would likely fail and dump tons of dirt into the upper reaches of the McKenzie River, a municipal watershed that served both Springfield and Eugene.

I came back to the office and wrote a report on the assessment, recommending we completely redo the sale, severely reducing both the amount of road building and logging. My advice was contrary to the agency mandate to “get out the cut,” and the district ranger, Steve Eubanks, instructed me to ditch my recommendations and present the report as it had been originally written. That was my welcome to what I began to refer to as “west side future shock.” My belief that the agency was trying to meet the spirit and intent of national legislation like the National Forest Management Act and the National Environmental Policy Act was a joke. The only real mandate I was supposed to follow was “get out the cut.”

Since I was not the signing official, I passed on the original assessment. My ranger signed it, and I hand carried my copy of the rejected analysis, which recommended severely limiting the sale’s scope and size, to a local environmental organization, the Oregon Natural Resource Council (now Oregon Wild).

Using my information, the group sued the agency and stopped the sale. But I was in a quandary. I could continue to set up environmentally disastrous sales by day and undo my work at night by surreptitiously providing information to environmental groups, or I could use my position with the agency to voice my concerns out loud. I decided to go public.

On February 4, 1989, I wrote a seven-page letter to the chief of the Forest Service, Dale Robertson. I detailed my disillusionment with the agency, gave numerous examples of how we were breaking the law to get the cut out, and gave him my suggestions as to how we could change. I asked him: “Wouldn’t you like to be able to look back and say the Forest Service was a leader in the quest for a new vision of a truly sustainable society for the twenty-first century?”

I sent the letter to the chief and to several congressmen and friends in the Forest Service. I sent it electronically as well—the agency had a national email called Data General, which I used to send copies of my letter to all my friends and associates. The email ended up in the hands of most of the timber operators and environmentalists in the region almost immediately.

Media outlets nationwide, including the New York Times, followed up on the letter with stories and investigations. They interviewed Chief Robertson about the dissident timber planner in Oregon. To his credit, he said, “I may not agree with all his assessments, but I agree with his right to voice his opinion.”

With the chief’s acknowledgement, I wasted no time ramping up the pressure. I pulled together a 501(c)(3) nonprofit corporation, and found a group of current Forest Service employees who were brave enough to join me and willing to become members of a board of directors for the group I called the Association of Forest Service Employees for Environmental Ethics. During the next two years I continued to work as a Forest Service timber sale planner by day, but at night and on weekends I organized Forest Service employees around the country and published a newsletter called Inner Voice.

The pressure to stop me began early on. During an interview with the forest supervisor and the personnel director, I was ordered to stop talking publicly about my concerns. I told them I would be happy to curb my discussions during work hours, which they had control over, but I invoked the First Amendment and stated that I intended to continue talking on my own time. The issue of free speech for public employees would become a cornerstone of AFSEEE. I later learned that once Chief Robertson made his comment to the press, folks in the regional office told my forest supervisor to back off, that I was too hot to discipline. In 1992, to the relief of agency brass, I resigned to carry on AFSEEE full time.

More from the Spring 2009 issue of Forest MagazineComplete Forest Magazine Archives

 



 
E-mail Print PDF

Happy Holidays!


Wishing you a joyful holiday season and the happiest of new years from the board and staff at FSEEE.

 

Amy, Jennifer, Patricia, Steve, Andy, Stephanie, Kevin, Jackie, Chuck and Dave

 
E-mail Print PDF

FSEEE's Executive Director Testifies About Recreation Fees

On June 18, FSEEE's Executive Director, Andy Stahl, provided testimony to members of the House Committee on Natural Resources, Subcommittee on Public Lands and Environmental Regulation. The committee sought advice regarding the Federal Land Recreation Enhancement Act (FLREA), which grants the Forest Service, and other federal land management agencies, the power to levy recreation user fees on public lands. Without Congressional action, FLREA will expire in December of 2014 and leave the land management agencies without the authority to gather recreation fees.

Andy urged Congress to reconsider the use of the standard amenity recreation fee on National Forests that was authorized under the existing act.

An archived copy of the hearing is available for viewing. Andy's testimony begins at 1:30:30.

You can also view FSEEE's written testimony here.

 
E-mail Print PDF

Arizona's Oak Flat Campground

photo U.S.Forest Service;

video © Elias Butler Photography.

 

 
E-mail Print PDF

Sealaska Claims Historic Tongass Site

Redoubt FallsBy Andrew Miller

On its website, the U.S. Forest Service boasts that Redoubt Falls is the “crown jewel” of its fisheries programs in Alaska’s Sitka Ranger District. Indeed, since fishery enhancement efforts began there in 1982, sockeye salmon returns have increased from just 456 to over 100,000 in 2006.

The current returns are in line with those observed by Russian traders, who operated a saltery at Redoubt Falls and reported annual catches as high as 50,000 fish between 1817 and 1832. However, the future of the Forest Service operation at Redoubt Falls and ownership of the parcel are in question.

Redoubt Falls is one of almost 100 sacred places in the Tongass National Forest that the Sealaska Corporation has claimed ownership of since the passage of the Alaska Native Claims Settlement Act (ANCSA) in 1971. Most of these selections were conveyed to Sealaska 20 or more years ago, but the Redoubt selection has been tied up by competing claims to title and other issues. It is now in the final stages of the Bureau of Land Management’s conveyance process and could be removed from the National Forest and placed in private hands as early as this year.

The largest land claim settlement in American’ history, ANCSA created 12 regional Native corporations (a 13th was added later), and it provided land for each of these corporations to manage and develop to the benefit of its shareholders, who were Native Americans from the region. The corporations also were allowed to select “sacred” or “cultural” sites, which were to have been of long-standing significance to indigenous people.

Sealaska Corporation is the regional Native corporation for Southeast Alaska. It claimed Redoubt Falls as a sacred site in 1975, justifying the cultural value of the site with oral histories of Native American elders who said their grandparents had used the property in the late 1800s.

Unlike many cultural sites chosen by Sealaska, retired Forest Service archeologist Stan Davis says the 10-acre Redoubt selection does not contain petroglyphs, pictographs, graves or even archeological evidence of a former village. Instead, Davis, who surveyed the parcel in the early 1980s, says the Redoubt selection contains perhaps the most intact Russian archeological site in North America.

Davis argues that Redoubt Falls needs to remain in public hands because of its tremendous value as a Russian-American site. To many locals, losing access to the sockeye salmon, which run thick through the falls each July and August, is a bigger issue.

Each year, the State of Alaska issues a few hundred subsistence permits to Sitka residents allowing them to use dip-nets to harvest large numbers of sockeye at Redoubt Falls. The fish are often canned and frozen, and later serve as meals for Sitka families throughout the winter.

Just 12 miles south of Sitka, Redoubt Falls is not only the closest subsistence sockeye stream to town, but it the only stream in the vicinity that can be reached without exposure to the open ocean, making it an extremely popular fishing destination.

The Forest Service began its Redoubt enhancement operation to benefit the community. Joe Serio, the current operator of the Redoubt weir, says the program has since become important for research purposes, with 30 years of data on ages and sizes of fish, fish return numbers and water chemistry, among other things.

“The wealth of information tied to this project and its potential is huge in terms of climate change and changes in the ocean,” he said.

Working with three college interns, Serio spends his summers at Redoubt Falls, counting and measuring fish, and fertilizing Redoubt Lake, which extends six miles from the mouth of the falls. About 20,000 pounds of fertilizer are added to the lake over the course of a summer.

Fertilization has been necessary because Redoubt Lake is meromictic, meaning its layers don’t mix well and nutrients all stay at the bottom. However, Serio says he foresees a day in the near future when the salmon sustain themselves.

Whether the Forest Service makes it to that future is the question. Sealaska Corporation has said its intent is to allow the Forest Service to continue its operation and to allow the public to continue fishing at Redoubt Falls after a conveyance. However, ANCSA does not allow easements for recreation or fishing, and attorneys exploring the issue say the law provides no guarantees of the status quo after a conveyance.

The Sitka Conservation Society, a local environmental group, has taken the position that Sealaska should withdraw its claim and enter a cooperative management agreement with the Forest Service for use of the property.

The Forest Service itself has voiced opposition to the conveyance multiple times over the last 30 years, arguing in the past that the parcel did not meet the definitions of “sacred” under ANCSA. Recently, Forest Service leaders have been more hands off, and users of Redoubt Falls remain anxious given there may be no going back once a conveyance goes through.
redoubt

Above, A mother and two cubs cross the Forest Service fish weir at Redoubt falls. Photo by Andrew Thoms

 
E-mail Print PDF

Light on Leaves by Lee Sherman

LiDAR image 500 year old forest

Not long ago if you wanted to measure the height of a tree, you had to do trigonometry on the ground—or gear up for a climb. But these days you have a more sophisticated option: beaming lasers from the sky.

A revolutionary airborne technology called LiDAR (“light detection and ranging”) is making it possible to measure and map entire forests in a sliver of the time—and for a fraction of the cost—of earlier methods. By bombarding forests with hundreds of thousands of light pulses from laser equipment mounted on airplanes, OSU scientists are getting never-before-seen 3-D images of dense old-growth stands such as McDonald Forest in the Willamette Valley and H.J. Andrews Experimental Forest in the McKenzie River Basin. And they’re doing it for the bargain-basement price of $2 an acre (not counting computer processing, which will add at least another dollar per acre to the cost). In contrast, the cost of putting two technicians on the forest floor with notebooks and measuring tapes is about $30 an hour. At a pace of about one hour per tree, mapping a forest the size of the Andrews on foot, with its 15,000 rugged acres in the Cascades foothills, would take years, if it could be done at all. With LiDAR you can start after breakfast and have the raw data in hand before lunch.

In fields as diverse as geology, oceanography and forest ecology, LiDAR is in fierce demand.

“LiDAR is everywhere,” says Tom Spies, a research ecologist at the USDA Forest Service, Pacific Northwest Research Station, who has a courtesy appointment at OSU. “It’s the hot new technology, the hot stuff.”

Bound for the Crown

Boots on the ground, however, still have a role. That’s why OSU researchers have been out in the field manually double-checking the height of the Andrews’ tallest 10 or 12 trees the old-fashioned way: with a tape measure.

One cool autumn afternoon in 2010, Spies and Mark Schulze, OSU’s Andrews Forest director, stand at the foot of an ancient Douglas fir as they strap on the harnesses and snap on the carabiners they will use to leverage their body weight. With gloves and helmets secured, the College of Forestry researchers clip their ascenders onto two of the colorful nylon ropes rigged in advance by professional climbers Rob Miron and Jason Seppa of the Pacific Tree Climbing Institute. Craning their necks, they can barely see where the orange and red lines disappear into the deep-green canopy. Crowning at 280 feet, the tree towers as tall as a 25-storey building.

The scientists are soon dwarfed as they hoist themselves skyward, dangling beside pitch-stippled bark as gray and craggy as a weathered mountainside. This silent colossus was a seedling about the time Shakespeare was writing his plays.

Spies and Schulze are “ground truthing” the LiDAR readings—that is, they’re comparing the laser readings against manual measurements in order to verify the LiDAR’s accuracy.

“We use a 300-foot tape measure,” says Schulze. “We stake one end to the ground at the base of the tree and attach the other to our climbing harness and take it up in a straight line along the trunk. Eventually, we reach a point above which we’re not comfortable climbing, and use a telescoping height pole to measure the remaining distance to the tip of the crown.”

So far, accuracy has been within a whisker.

“LiDAR can measure heights to the nearest centimeter,” reports Spies.

Seeing Structure

LiDAR’s beauty, aside from being fast and cheap, is its 3-D capability. It can characterize a forest’s structure at every layer: from streambed to treetop, from open clearing to tangled undergrowth, from massive coniferous branches to twiggy deciduous boughs. Sitting at their computers, scientists can rotate the colorful LiDAR images to view the forest from an infinite number of angles.

This remote sensing tool is similar to the radar that air traffic controllers and meteorologists use to monitor jets and hurricanes, except one uses electromagnetic waves while the other uses pulses of light. Radar (originally dubbed RADAR, for “radio detection and ranging”) works by bouncing radio waves off a target to gauge its distance and position. LiDAR does the same thing with lasers, targeting anything from woodlands to coastlines to rainclouds.

For OSU’s forest research, 10 laser points per square meter are beamed to Earth from a sensor mounted beneath a small twin-engine plane owned and operated by Watershed Sciences, a Corvallis-based firm. After hitting an object—a fallen log, a rocky outcropping, a thick mesh of branches, a logging road—light from each pulse scatters backward to the sensor. This bounce-back is called an “echo.” The period of time each beam takes to return to the sensor indicates the object’s elevation. So if the beam comes back fast, that means it bounced against something tall. If it comes back later, it bounced against something lower in the forest layers, maybe even bare earth where foliage is thin. The digital images that emerge provide a comprehensive picture of forest structure unlike anything possible pre-LiDAR.

“Forest structure is key to its ecology,” says Spies. “Knowing the details of forest structure not only allows us to better predict and manage habitat for wildlife but also to understand microclimates, measure carbon and biomass, manage wildfires and design restoration efforts.”

OSU ecologist and wildlife biologist Matt Betts explains that “vertical structure”—how vegetation is layered throughout the forest—determines habitat selection and even survival for forest species.

“Many experts increasingly believe vertical structure is the primary driver of biodiversity,” asserts Betts, an assistant professor of forest ecosystems and society. “Researchers can often predict with considerable accuracy the diversity of birds, mammals, even insects and butterflies that will live in areas, based on what you can tell of the vertical structure of the forest.”

Transformational Technology

Forest ecologists like Spies and Betts comprise only one LiDAR user group. The current and future uses for this new tool are as vast as Oregon’s storied woods. Already, OSU geoscientists have used LiDAR to study post-tsunami landscapes in Samoa and detect hidden earthquake faults in Puget Sound. NASA is using it to estimate global carbon stocks and detect atmospheric changes across the planet. The National Oceanic and Atmospheric Administration is tracking topographic changes along coastlines. The list is long and varied.

Spies goes so far as to liken LiDAR to such transformational technologies as the telescope and the microscope.

“Anytime there’s a new tool in science and research, it opens up a whole new avenue of investigation, one that you couldn’t necessarily anticipate,” he notes. “You end up discovering that it can give you answers to questions you never thought you could ask before.”

reprinted with permission from Terra Magazine, Oregon State University

 
E-mail Print PDF

Louisiana Pine Snakes in Pine Forests by Wendee Holtcamp

lps

Craig Rudolph’s white hair and a bushy white beard are a common sight in the longleaf pine savannah of East Texas. A U.S. Forest Service Southern Research Station biologist, Rudolph and his colleagues regularly check dozens of four-by-four-foot square box traps, and with more than 350,000 “trap-days” under their belt, they catch a lot of snakes. But though they are searching in the historic range of one of North America’s rarest reptiles, the Louisiana pine snakes, they’re catching fewer and fewer as the years pass.

Rudoph has been studying the Louisiana pine snake for more than fifteen years. His research indicates that there are only three small isolated populations in east Texas, in addition to three slightly larger populations in western Louisiana. “My gut tells me they’re in a world of hurt,” he says, though the snake is not yet listed as an endangered species.

Texas lists Louisiana pine snakes as a threatened species, which makes it illegal for people to collect, sell or harm them, but the status offers no habitat protection, and Louisiana law does not protect them at all. In 1999, the U.S. Fish & Wildlife Service identified the snake as a candidate species for listing as endangered or threatened, and though the agency has enough information to list them under the Endangered Species Act, it’s precluded by other higher priority species.

The robust tan-and-brown checkered Louisiana pine snakes grow to around six feet long. They live primarily in fire-adapted longleaf pine forests, an ecosystem that once stretched across the southeastern United States, from Virginia to eastern Texas. From the late 19th century on, timber companies logged prized longleaf pine, but replanted with faster growing loblolly. Only 3 percent of the original 90 million acres of longleaf pine savannah acreage remains, with less than 0.01 percent of the original old growth forest left.

The open park-like forests near Angelina National Forest’s Boykin Springs reveals a glimpse of what early pioneers saw before logging and years of fire suppression changed the face of the forest. Longleaf pines grow in nutrient-poor sandy soils, comprised largely of quartz crystals. The trees don’t achieve large girth for hundreds of years because they are essentially growing in glass. Knee-high grasses and plants carpet the forest floor. In centuries past, regular wildfires swept through the pine forests clearing out underbrush, but wildfire suppression drastically changed the character of these fire-adapted forests. Although the Forest Service now regularly ignites carefully controlled burns, biologists are just now coming to grips with how past mismanagement has affected the forest ecosystem.

Rudolph first got intrigued by the Louisiana pine snake in the early 1980s. He knew they were rare but he wondered why he didn’t often see them. “I spent a lot of time in what should have been good habitat,” he says. “I never saw one.” He and other scientists started researching the snake in 1993, and at that time, they didn’t know if the species was rare or just rarely seen, and they didn’t understand basic information such as what the snakes ate, what habitat they preferred, when they bred or how vulnerable they might be.

The biologists started trapping in areas they thought might be prime habitat—the remaining longleaf pine savannah—and they caught some right away. “We started doing a basic telemetry study,” Rudolph says. After catching a snake, they’d surgically implant a transmitter inside the snake’s body, and radio telemetry allowed them to follow the snakes’ movements and study their behavior.

“We did a lot of surveys throughout their historic range,” Rudolph says. Relatively quickly, they located three isolated populations in Texas—Boykin Springs on the Angelina National Forest, Foxhunter’s Hill in the Sabine National Forest, and Scrappin’ Valley on private timber company land. Then their luck ran out. “After the first few years, we never found any new populations.”

The radio tracking studies revealed one reason why the snakes had been so hard to spot—they live underground. “They spend most of their time in close association with pocket gopher burrows. It’s where they hibernate, where they shelter, and where they forage. And it’s how they escape from fire,” Rudolph says.

Although most people don’t give the world underneath the ground much thought, a subterranean ecosystem exists there. Pocket gophers create extensive burrow systems that provide shelter for dozens of species, from frogs to tortoises to salamanders to insects. The gophers eat roots and tubers, and, when necessary, try to escape from what Rudolph found was their most formidable predator, the Louisiana pine snake. The snakes play an important ecological role. They occasionally eat moles, turtle eggs and other small rodents, and as the subterranean-living reptiles slither underground, they keep abandoned gopher burrows open, which in turn provide habitat for other creatures.

This connection between Louisiana pine snakes and pocket gophers provided a major clue about the snakes’ decline. Wildfires once regularly scorched the forest, but decades of fire suppression caused an ecological domino effect. Pine forests became overgrown with brush and lost herbaceous groundcover, causing pocket gopher numbers to plummet, and in turn affecting Louisiana pine snakes. That situation remained until a court case in the late 1980s forced the Forest Service to better manage fire and controlled burns in national forests for endangered red-cockaded woodpeckers, which incidentally improved habitat for gophers and Louisiana pine snakes.

Although the Fish & Wildlife Service has not yet listed the Louisiana pine snake as endangered, they developed a Candidate Conservation Agreement, a collaborative effort that allows every impacted entity to help protect the species in the meantime. “The basic idea is to get different partners to do beneficial actions to reduce the threats and improve its conservation status,” explains Fish and Wildlife biologist Ben Thatcher. The Forest Service is also involved in a captive breeding program, though capturing enough snakes to breed has been challenging. They wanted to start the program with fifteen pairs; during the past year and a half they’ve caught just five males and one female. “At this rate it will take us thirty years to catch fifteen females,” Rudolph says.

Those concerned about the snake’s future must address serious issues before the species has any chance of recovering: drastic losses of historic longleaf pine forest habitat, decades of wildfire suppression, roadkills, fragmentation of remaining forest and the problems caused by the physical isolation of the handful of small populations from one another. And a new threat has arisen: timber companies managing longleaf pine forests in Louisiana, which have the largest populations of the snakes, have switched to intensive silviculture including herbicide to eliminate all groundcover. Removing fire once again from the forest does not bode well for the snakes or the ecosystem.

Louisiana pine snakes are rare under the best of conditions because of their biology – a female will lay around four eggs and it takes the snakes many years to reach maturity. Recovering one of the most imperiled snakes in North America will be no easy feat, whether it gets listed as a federally endangered species or not. “The biology of the species and its habitat management needs are reasonably well understood,” says Rudolph. “It is now a question of agencies, private landowners and biologists cooperating in the restoration of landscapes that can support the recovery of Louisiana Pine Snakes.”

 

Award-winning freelance writer Wendee Holtcamp writes about science and the environment from Houston for National Wildlife, Scientific American, Miller-McCune and other magazines.

 
E-mail Print PDF

Forest of Change by Kevin Colby

 

2004

The trees turned red. I first thought was that it wasn’t so terrible. It added another color to the landscape and there were interesting vistas from a distance. Then I got closer. It looked bad. Dry and twisted and dead. (click photo above to animate)

The magnitude of the problem became evident. It is unlike anything that I’ve seen before. At a highpoint point, a sea of dead trees stretch away as far as I can see. It takes my breath away.

blue lake

Above and right, Arapahoe National Recreation Area, Colorado

Many attribute the condition to a dry landscape and warm weather, both aspects of climate change. Our climate has always changed, but this change might be more drastic than what we are used to. For the western forests, it could mean conditions that are drier and warmer than those that existed when the forests developed. The changes may not be welcome. Or pretty. We’ve grown to love our pine and aspen forests just the way they are.

The changes make me apprehensive. I don’t know how they will affect the landscape and the services it provides.

It’s not hard to imagine that red forest ablaze. That image is galvanizing, making me want to do something, anything. However, the science is complicated on this issue. Fire is more likely to start at the early, ‘red needle’ stage, but after those needles fall, it is less likely to be carried from tree to tree. In a green forest, that’s the kind of fire that most people are afraid of.

And what about the animals that inhabit the forest? With the vegetation changing how do they adjust? Do they move? What comes next? Will there be different plants and animals?

 

Another apprehension is water. In the West we depend on precipitation that falls in the mountains for a majority of our water. We are used to having most of that precipitation fall as snow. The rate of snowfall and snowmelt may be changing due to climate change. Less snowfall and quicker snowmelt will be problematic.

One response to the beetle epidemic is to remove dead trees at use areas, along roads and trails and utility lines and wherever else falling trees are a direct threat to health and safety. Another response would be to decrease the risk of fire by falling and removing those dead trees.

Willow Creek Pass looking toward the Never Summer Mountains, Colorado

The scale of the changing forest is immense, however, and measures to lessen the hazard cannot be implemented everywhere. Affected areas have different owners and managers, as well as different designations—wilderness areas for example—where activities are circumscribed. Some have slopes that are too steep or surfaces too rocky for safe operations. Removal is also expensive. Some operations pay for themselves, but the vast majority cost money and resources are not unlimited. Nature will take its course for the vast majority of the landscape.

Spraying offers some protection—90 percent of sprayed trees will live to see another year.  However, the simple math is sobering. If forests are sprayed every year and 10 percent of the trees are lost, the group of sprayed trees will slowly succumb. Spraying is costly and there is no logical stopping point as long as bugs are swarming. And that option does not factor in the environmental repercussions of spray in the landscape.

Biologic controls may be effective. Pheromones may also be useful, however they may have unintended effects.

For much of the land, the most appropriate technique is to cut and remove the dead trees that are hazardous. This means many, many clear-cuts.

The forest cover will regenerate in those clear-cut areas. Conditions have not changed so drastically that so far the vegetative species that have historically been present cannot return. That natural regeneration is fine for most places. For some places however, that natural process will not happen fast enough and can be hastened by planting.

Some scientists think that this epidemic is on the wane, that in some regions, the bugs have peaked and are in decline. They’ve literally eaten themselves out of house and home. Before we can find much comfort in that thought comes another one hard on its heels: the climate is indeed changing and will continue to do so for the coming years, and that change could have repercussions as disquieting and more severe as the current insect epidemic. Whatever the future, the landscape is reacting to change and may be morphing into something different.

 

 

Before & During Insect Epidemic

Fraser Valley, Middle Fork, CO

Rocky Mountain National Park, left; Winter Park Ski Area, right

click top photo to animate

2004

2008

2008

2010

2010

2011

2011

 
E-mail Print PDF

Georgia's Anna Ruby Falls

Story and Photo by Mike Smith

One of the jewels of the Chattahoochee National Forest, the geographic crown of North Georgia, is Anna Ruby Falls, an unusual double waterfall that draws 160,000 visitors annually, more than any other forest facility in Georgia. At Anna Ruby Falls Recreation Area, paths and streams wind through second growth stands of white pine and poplar interspersed with rhododendron and mountain laurel, and short trails guide recreationists to the base of the spectacular falls.

The water for the falls originates on top of Tray Mountain, Georgia’s sixth highest peak and once a part of the Cherokee Indian territory. York and Curtis Creeks tumble over a rock ledge and fall 50 and 153 feet, respectively. At the base of the falls, they combine to form Smith Creek, which meanders down to Unicoi Lake and eventually flows into the Chattahoochee River. From there it joins the Appalachicola River in Florida and runs more than 500 miles until it empties into the Gulf of Mexico.

The trail from the visitor’s center to the falls, designated as a National Recreation Trail, is an easy to moderate climb. Bridges cross Smith Creek, and wooden observation decks partway up offer excellent views of both waterfalls. The Lion’s Eye Trail sponsored by the Lion’s Club originates at the visitor center and follows along Smith Creek. A handrail and signs in Braille border this shorter and easier interpretive route.

The falls were originally in private ownership. Colonel John H. Nichols purchased the land after the Civil War and named the waterfalls after his daughter. When the federal government purchased the land in the 1920s, it combined it with the Cherokee National Forest in Tennessee. In 1937, the area became the Chattahoochee National Forest.
Despite the lure of the falls’ natural beauty, the area has not always been accessible to visitors. The U.S. Forest Service managed the facilities until the 1980s, when cutbacks in funding forced them to close. A nonprofit group reopened the falls to visitors around 1987, but that organization went out of business in 2005. In 2007, the agency selected another nonprofit group, Cradle of Forestry Interpretative Association to manage the facilities.

Two former Forest Service employees, David Carswell and Parker Hollifield, now co-manage the visitor center and recreation area. The arrangement works well for everyone: the agency receives a fee from the Interpretive Association, which in turn collects visitor fees and handles the day-to-day maintenance and operations. Carswell and Hollifield provide staff for a gift shop, which offers original paintings, fine pottery, and Appalachian Mountain crafts, and earnings from these sales support interpretive programs and forest conservation projects. The Forest Service provides capital improvements and infrastructure, such as a project that used federal stimulus funds to complete the paving of a section of trail. But best of all, the area remains open to visitors.

For more information, visit Anna Ruby Falls Recreation Center

Mike Smith is a freelance writer who grew up in North Georgia and now lives in Atlanta. www.gulfshorewriter.com.

 
  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  Next 
  •  End 
  • »


Page 1 of 2

FSEEE Newsletter

Forest News - Spring 2014
Click the photo link below to view the .pdf version of our printed ...Read More

Forest Magazine

FOREST MAGAZINE
Conserving Our National Heritage

JOIN FSEEE
For readers who value our national forests for recreation, clean water, wildlife sanctuaries and spectacular wilderness.
Forest Magazine articles from FSEEE’s newsletter.
Forest Magazine articles about America's national forests.
Read the 1999 Forest Magazine investigation that examined the threat of forest fire at Los Alamos in depth.

Reader comments
Comments from readers are always welcome. Forest Magazine editors may be contacted by e-mail.

HOW TO CONTACT US
Editor
Patricia Marshall
patricia@fseee.org
  • Publisher
Andy Stahl
andy@fseee.org

Forest Magazine
P.O. Box 11646
Eugene, OR 97440
Phone (541) 484-3170
Fax (541) 484-3004
fseee@fseee.org

THE FINE PRINT
Forest Magazine is published by Forest Service Employees for Environmental Ethics, P.O. Box 11615, Eugene, OR 97440. The views expressed in Forest Magazine are those of the authors and do not necessarily reflect FSEEE’s position or that of the Forest Service. Copyright © 2008 Forest Service Employees For Environmental Ethics.

Resources

Online Library

Download FSEEE's Guide to Free Speech and more.

 

Forest Service Information

Forest Service Directory
Forest Service Employee Email
Forest Service News Links

Your Representatives

U.S. Senate Contacts
U.S. House Contacts

Workplace Giving